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The gluconeogenesis pathway, which has been known to normally present in

the liver, kidney, intestine, or muscle, has four irreversible steps catalyzed by

the enzymes: pyruvate carboxylase, phosphoenolpyruvate carboxykinase, fructose

1,6-bisphosphatase, and glucose 6-phosphatase. Studies have also demonstrated

evidence that gluconeogenesis exists in brain astrocytes but no convincing data

have yet been found in neurons. Astrocytes exhibit significant 6-phosphofructo-2-

kinase/fructose-2,6-bisphosphatase-3 activity, a key mechanism for regulating glycolysis

and gluconeogenesis. Astrocytes are unique in that they use glycolysis to produce

lactate, which is then shuttled into neurons and used as gluconeogenic precursors

for reduction. This gluconeogenesis pathway found in astrocytes is becoming more

recognized as an important alternative glucose source for neurons, specifically in

ischemic stroke and brain tumor. Further studies are needed to discover how the

gluconeogenesis pathway is controlled in the brain, which may lead to the development

of therapeutic targets to control energy levels and cellular survival in ischemic stroke

patients, or inhibit gluconeogenesis in brain tumors to promote malignant cell death

and tumor regression. While there are extensive studies on the mechanisms of cerebral

glycolysis in ischemic stroke and brain tumors, studies on cerebral gluconeogenesis are

limited. Here, we review studies done to date regarding gluconeogenesis to evaluate

whether this metabolic pathway is beneficial or detrimental to the brain under these

pathological conditions.

Keywords: gluconeogenesis, glycolysis, stroke, glioma, metastatic breast cancer, tumor-infiltrating lymphocytes,

lactate, pyruvate recycling

GLUCONEOGENESIS PATHWAY

The gluconeogenesis pathway (Figure 1) has four irreversible steps catalyzed by the
enzymes: pyruvate carboxylase (PC), phosphoenolpyruvate carboxykinase (PCK), fructose
1,6-bisphosphatase (FBP), and glucose 6-phosphatase (G6PC; van den Berghe, 1996), which have
been found in the liver, kidney, intestine, and muscle. In the brain, astrocytes exhibit significant
6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) activity (Herrero-Mendez
et al., 2009), a key mechanism for regulating glycolysis and gluconeogenesis through synthesis
or hydrolysis of fructose-2,6-bisphosphate (Hers, 1983). Gluconeogenesis in astrocytes has been
demonstrated with aspartate, glutamate, alanine, and lactate as precursors (Ide et al., 1969; Phillips
and Coxon, 1975; Dringen et al., 1993a; Schmoll et al., 1995). Alterations in promoter methylation
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FIGURE 1 | Gluconeogenesis is a multistep metabolic process that generates glucose from pyruvate or a related three-carbon compound (lactate)

and glutamine. Several reversible steps in gluconeogenesis are catalyzed by the same enzymes used in glycolysis. There are three irreversible steps in the

gluconeogenic pathway: (1) conversion of pyruvate to PEP via oxaloacetate, catalyzed by PC and PCK; (2) dephosphorylation of fructose 1,6-bisphosphate by FBP;

and (3) dephosphorylation of glucose 6-phosphate by G6PC.

of the fructose 1,6-bisphosphatase gene, which is the rate limiting
enzyme in the gluconeogenic pathway, have been found in cancer
cells, potentially affecting mRNA levels and expression of the
enzyme (Bigl et al., 2008). No studies have found evidence of
gluconeogenic activity in neurons to our knowledge.

PC is a mitochondrial enzyme in the ligase class that catalyzes
the irreversible carboxylation of pyruvate to oxaloacetate in the
metabolic pathway of gluconeogenesis. The reaction is dependent
on biotin, adenosine triphosphate (ATP) and magnesium
(Jitrapakdee and Wallace, 1999; Jitrapakdee et al., 2008). Acetyl-
coenzyme A (Acetyl-CoA) is the allosteric effector of PC in
humans (Adina-Zada et al., 2012).

PCK is an enzyme in the lyase family that converts
oxaloacetate into phosphoenolpyruvate and carbon dioxide,

either in the cytosol or mitochondria via the cytosolic (PCK1)
or mitochondrial (PCK2) isoforms of the enzyme, respectively.
In the human liver, PCK is approximately equally distributed in
the cytosol and the mitochondria (Atkin et al., 1979). Cytosolic
PCK has been found with FBP in the liver, kidney, small
intestine, stomach, adrenal gland, testis, and prostate. The co-
localization of these two enzymes in these tissues suggest that
gluconeogenesis may not be restricted to liver and kidney (Yánez
et al., 2003).

FBP is a cytosolic enzyme that catalyzes the
dephosphorylation of fructose 1,6-bisphosphate to fructose
6-phosphate and inorganic phosphate in gluconeogenesis and
the Calvin cycle (Paksu et al., 2011). Two human isoforms of the
enzyme have been reported in the liver and muscle (Adams et al.,
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1990). Both isoforms are inhibited by adenosine monophosphate
(AMP) and fructose 2,6-bisphosphate, a competitive substrate
inhibitor of fructose 1,6-bisphosphate (Dzugaj and Kochman,
1980; el-Maghrabi et al., 1993; Tillmann and Eschrich, 1998).
FBP activity is upregulated by 1,25-dihydroxyvitamin D3 in
normal monocytes (Fujisawa et al., 2000). The liver isoenzyme
has also been found in the kidney, type II pneumocytes, and
monocytes (Dzugaj and Kochman, 1980; Kikawa et al., 1994;
Gizak et al., 2001). Human FBP has been detected in leukocytes
(Sybirna et al., 2006), prostate, ovary, adrenal gland, pancreas,
heart, and stomach (Yánez et al., 2003). FBP inhibitors are being
investigated as potential therapy for type 2 diabetes due their
capability to reduce gluconeogenesis (van Poelje et al., 2011).

G6PC is an enzyme situated in the endoplasmic reticulum
and hydrolyzes glucose 6-phosphate to produce glucose and
inorganic phosphate. A number of isoforms have been noted in
humans, including glucose 6-phosphatase-α (G6PC), glucose 6-
phosphatase-2 (G6PC2), and glucose 6-phosphatase-β (G6PC3;
Hutton and O’Brien, 2009). In humans, the glucose 6-
phosphatase-α (G6PC) gene is primarily expressed in the
liver, kidney, intestine, and less so in pancreatic islets,
although current knowledge on this gene’s tissue expression
and its enzyme characteristics is limited. The g6pc2 gene
is predominantly expressed in pancreatic islets (Hutton and
O’Brien, 2009), whereas the g6pc3 gene is ubiquitously expressed
with predominance in the brain, muscle, and kidney (Martin
et al., 2002).

The bifunctional 6-phosphofructo-2-kinase/fructose-2,6-
bisphosphatase (PFKFB) is responsible for phosphorylating
fructose 6-phosphate to fructose-2,6-bisphosphate, which in
turn activates phosphofructokinase-1 and the glycolytic pathway
(Yalcin et al., 2009). Of the four PFKFB isoenzymes, PFKFB3
is distinguished by the presence of multiple AUUUA instability
motifs in its 3′ untranslated region (Chesney et al., 1999), a
very high kinase-to-phosphatase activity ratio (740:1; Sakakibara
et al., 1997), high expression in rapidly proliferating transformed
cells (Chesney et al., 1999), solid tumors and leukemias (Chesney
et al., 1999; Kessler and Eschrich, 2001; Atsumi et al., 2002), and
regulation by several proteins essential for tumor progression
[e.g., HIF-1α (Obach et al., 2004), Akt (Manes and El-Maghrabi,
2005), and PTEN (Cordero-Espinoza and Hagen, 2013)].
Different nomenclature also recognizes two PFKFB3 isoforms,
termed “inducible” and “ubiquitous” (Navarro-Sabaté et al.,
2001). The inducible isoform has been shown to be induced by
hypoxia. Heterozygous genomic deletion of the pfkfb3 gene has
been found to reduce both the glucose metabolism and growth
of tumors in mice (Telang et al., 2006).

Taken together, as shown in Figure 1, gluconeogenesis is a
multistep metabolic process that generates glucose from pyruvate
or a related three-carbon compound (lactate, alanine). Seven
reversible steps in gluconeogenesis are catalyzed by the same
enzymes used in glycolysis. There are three irreversible steps in
the gluconeogenic pathway: (1) conversion of pyruvate to PEP via
oxaloacetate, catalyzed by PC and PCK; (2) dephosphorylation of
fructose 1,6-bisphosphate by FBP-1; and (3) dephosphorylation
of glucose 6-phosphate by G6PC.

GLYCOLYSIS AND GLUCONEOGENESIS IN
THE BRAIN

It is commonly believed that gluconeogenesis is normally present
only in the liver, kidney, intestine, or muscle (Chen et al.,
2015). Emerging studies, however, are showing evidence that
gluconeogenic activity can also occur in the brain. While initial
studies were not able to detect dephosphorylation of glucose-6-
phosphate (Nelson et al., 1985; Dienel et al., 1988; Schmidt et al.,
1989), subsequent studies revealed a functional G6PC complex
in the brain (Bell et al., 1993; Forsyth et al., 1993; Schmoll et al.,
1997) capable of hydrolyzing glucose-6-phosphate into glucose
at a significant rate (Ghosh et al., 2005). Immunofluorescence
studies have shown co-localization of glial fibrillary acidic protein
(GFAP) with G6PC in astrocytes. While reactive astrocytes in
a variety of abnormal brains were strongly G6PC positive,
neoplastic astrocytes were often only weakly positive. G6PC was
yet found in radial glia, neurons or oligodendroglia. Normally,
astrocytes store glycogen. The demonstration that a subset of
astrocytes also contain G6PC suggests that they are competent
in gluconeogenesis, serving as a potential energy pathway for
neurons (Bell et al., 1993). It has been suggested that G6PC may
be silent under physiological conditions and become activated at
times of stress (Ghosh et al., 2005). It is also possible that G6PC
is not an essential enzyme for astrocytes to release glucose, and
instead use a glucose concentration gradient to promote flow of
glucose from astrocytes to neurons (Gandhi et al., 2009).

The interstitial microenvironment in the brain is unique.
Due to the metabolic gatekeeping of astrocytes, which form
bridges between neurons and blood vessels, the interstitial space
is characterized by low levels of glucose (Fellows et al., 1992),
high levels of glutamate (Yudkoff et al., 1993), and high levels
of branched chain α-ketoacids (Daikhin and Yudkoff, 2000).
After passing through the blood–brain barrier (BBB), glucose
is mainly taken up and processed by astrocytes for neuronal
energy requirements (Pellerin, 2008), resulting in an interstitial
glucose level that is lower than that in the blood (Fellows
et al., 1992; Gruetter et al., 1992). Brain glutamate consists of
amino groups primarily derived from branched chain amino
acids (BCAA; (Yudkoff et al., 1993)). This is made possible by
neutral amino acid transporters that are highly expressed in
brain endothelial cells (del Amo et al., 2008). Astrocytes then
produce glutamine via transfer of an amino group from BCAA
to glutamate, derived from α-ketoglutarate through the TCA
cycle, with the resulting branched chain α-ketoacids released into
the interstitial space and taken up by neurons for glutamine
metabolism by deamination (Yudkoff et al., 1993).

Astrocytes are unique in that they use glycolysis to produce
lactate, which is then shuttled into neurons and used for
oxidative metabolism as yet another source of energy (Dringen
et al., 1993b). Excess lactic acid is either removed via the
vasculature or temporarily stored by metabolic conversion into
glucose and glycogen or into alanine (Dringen et al., 1993a).
Signal transduction involved in glycogen synthase (GS) activation
(Hurel et al., 1996; Sung et al., 1998) aids in lactic acid conversion
to glycogen in astrocytes and other cells with gluconeogenic
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potential (Dringen et al., 1993a; Bernard-Hélary et al., 2002). At
times of high energy demand, lactate is formed as byproducts
of anaerobic glycolysis by neighboring neurons, which can
subsequently be used as substrates for gluconeogenesis. By
retaining lactate intracellularly, lethal levels of lactic acidosis can
be prevented by the use of gluconeogenic processes in astrocytes
(Beckner et al., 2005).

In the liver, pyruvate is produced within the cell cytoplasm
from glucose via glycolysis or conversion of alanine via alanine
aminotransferase (ALT) in the Cahill cycle, which is then
transported into the mitochondria (Bricker et al., 2012). Within
the mitochondria, pyruvate may act as a substrate for the
pyruvate dehydrogenase (PDH) complex, via the oxidative
pathway, to produce ATP through the tricarboxylic acid (TCA)
cycle and the oxidative phosphorylation reaction, or it can
be taken up by PC through the gluconeogenesis pathway
to produce glucose. In oxidative phosphorylation, oxidation
of pyruvate to carbon dioxide involves the collaboration of
the PDH complex, the TCA cycle, and the mitochondrial
respiratory chain, which consumes oxygen to produce energy in
the form of ATP. Under hypoxia or oxidative phosphorylation
enzyme dysfunction, mitochondrial ATP production becomes
interrupted. Under these circumstances, glycolysis becomes the
primary source of energy, increasing the generation of lactate, an
anion produced by lactate dehydrogenase (LDH) in the last step
of glycolysis. In addition, impairment of the rate-limiting enzyme
(FBP) in gluconeogenesis also results in lactate accumulation,
as this metabolic route represents the predominant pathway to
lactate utilization.

Enzymes involved in lactate metabolism have been shown
to play critical roles in cancer cell growth and survival.
In patients with G6PC deficiency (von Gierke disease), a
significant difference in the cerebral arterio-venous lactate
concentration has been demonstrated, suggesting that lactate
may be used as an energy source by the brain (Fernandes et al.,
1982). In ischemic stroke, hypoxia causes accumulation of
lactic acid intracellularly, resulting in inhibition of glycolysis
and subsequent suppression of ATP production. Neither
mitochondrial oxidative phosphorylation nor anaerobic
glycolysis alone can produce ATP at a sufficient rate to maintain
brain function (D’Alecy et al., 1986).

To date, other enzymes involved in the gluconeogenesis
pathway, such as PC and PFKFB, have yet to be elucidated in the
brain.

GLUCONEOGENESIS UNDER
PATHOLOGICAL CONDITIONS

Gluconeogenesis has been found to play a role in several
pathological conditions. In the setting of ischemic stroke,
mitochondrial ATP production becomes interrupted. Glycolysis
becomes the primary source of energy, increasing the
generation of lactate. Glucagon, a peptide hormone that
activates gluconeogenesis, has a stimulatory effect on brain
mitochondrial oxidative phosphorylation and may play a role in
neuroprotection against hypoxic damage (D’Alecy et al., 1986).

High glutamate levels have been implicated to be neurotoxic in
stroke, head trauma, multiple sclerosis, and neurodegenerative
diseases (Matés et al., 2002). The brain interstitium also
contains glutamine (Yudkoff et al., 1993) and BCAA (Yudkoff,
1997; Daikhin and Yudkoff, 2000), which can serve as energy
substrates through gluconeogenesis (DeBerardinis et al., 2007)
and contribute to brain cancer growth and survival. Glucose
formed by hepatic gluconeogenesis may be metabolized in brain
tumors and generate lactate through glycolysis (Pichumani
et al., 2016). Gliomas with low levels of phosphorylated Akt
have been demonstrated to respond to erlotinib (Haas-Kogan
et al., 2005). While increased levels of glycolytic enzymes were
found in brain cancer cells (Chen et al., 2007; Palmieri et al.,
2009), enhanced glucose uptake is not a feature of breast cancer
brain metastasis (Chen, 2007; Kitajima et al., 2008; Bochev
et al., 2012; Manohar et al., 2013). Brain metastatic cancer
cells from the breast proliferate in the absence of glucose
by acquiring enhanced FBP-based gluconeogenesis capabilities
(Chen et al., 2015). Furthermore, the high metabolic demand and
nutrient consumption of tumor cells prevent tumor-infiltrating
lymphocytes (TIL) proliferation and differentiation, leading to
functional impairment through suppressed IFN-γ production
(Chang et al., 2013; Gubser et al., 2013) and TIL exhaustion
(Ho et al., 2015). Phosphoenolpyruvate deficiency was found to
increase sarco/endoplasmic reticulum Ca2+-ATPase (SERCA)-
mediated Ca2+ re-uptake, preventing Ca2+- nuclear factor of
activated T cells (NFAT) signaling and T-cell activation (Ho et al.,
2015). Promoting phosphoenolpyruvate production in T cells
may prove to be a promising strategy to improve the tumoricidal
effects of TIL and adoptive cellular transfer (ACT) (Ho et al.,
2015). Other enzymes involved in the gluconeogenesis pathway,
such as PC and PFKFB, have not been well-studied in the brain
under pathological conditions.

Ischemic Stroke
Clinical experience and animal model studies have led to the
conclusion that hypoxia initially begins with a compromise
in brain function, followed by respiratory and then finally
cardiovascular collapse. Lundy et al. (1984) have shown that
hypoxic rats first lose brain electrical activity, have respiratory
arrest ∼84 s later, and then finally experience cardiovascular
collapse after another 71 s. Studies done in hypoxic dogs have
likewise found that brain electrical activity ceases before the
animals experience cardiovascular collapse (Herin et al., 1978).
Previous studies have demonstrated that elevated blood ketones
increased survival times of up to five times longer in mice
subjected to hypoxic conditions (Eiger et al., 1980). Similarly,
butanediol-induced ketosis was associated with improved
neurologic function in hypoxic rats, and exogenous glucagon
further potentiated this hypoxic tolerance (Eiger et al., 1980).

Hyperglycemia during acute stress has been associated with
increased mortality (Dungan et al., 2009). Glucose control
improves clinical outcomes, particularly in hospitalized patients
with acute myocardial infarctions, undergoing coronary bypass
surgery, or patients on ventilator support (Furnary et al.,
2003; Malmberg et al., 2005; Van den Berghe et al., 2006).
A high proportion of patients with acute stroke may develop
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hyperglycemia, including those without pre-existing diabetes
(Capes et al., 2000; Kent et al., 2001; McCormick et al., 2008).
Multiple studies suggest that stress-induced hyperglycemia after
acute stroke is associated with a high risk of morbidity and
mortality (Capes et al., 2000; Kent et al., 2001; McCormick
et al., 2008). Stress-induced hyperglycemia has been attributed
to increased stressed hormones, increased autonomic outflow
from the hypothalamus or medulla, unmasking of occult diabetes
mellitus, decreased plasma insulin concentrations or organ
sensitivity, or damage to the glucose-regulating centers in the
brain (Wass and Lanier, 1996). The toxicity of hyperglycemia
does not appear to be related to the osmotic load of
glucose or the direct effect of lactate, but the increase in
blood glucose concentrations at the time of brain ischemia
provides more substrate for anaerobic glycolysis and worsening
intracellular acidosis (Pulsinelli et al., 1982). The resulting
acidosis interferes with glycolysis, protein synthesis and activity,
ion homeostasis, neurotransmitter release and reuptake, enzyme
function, free radical production or scavenging, and stimulus-
response coupling (Wass and Lanier, 1996). Previous studies
have supported the point of demarcation between good and
poor outcomes for glucose concentrations ranging from ∼100
to 400mg/dL (Wass and Lanier, 1996). Interestingly, while
glucose-mediated exacerbation of neurological injury is well-
documented in adults, it may not occur in newborns (Vannucci
and Yager, 1992). Glucose pretreatment in perinatal animals have
been shown to prolong survival and decrease permanent brain
damage after systemic hypoxia, asphyxia, or cerebral ischemia.
These studies highlight the importance of stress hyperglycemia
as a pathologic factor in stroke progression, and suggests that
lowering blood glucose levels after ischemic stroke may improve
clinical outcome.

Glucagon levels may be elevated in stress conditions such as
hypoxia and starvation. Glucagon has a direct and substrate-
specific stimulatory effect on brain mitochondrial oxidative
phosphorylation and may play a role in neuroprotection against
hypoxic damage by stimulating or sustaining mitochondrial ATP
production necessary for neuronal function (D’Alecy et al., 1986).
Plasma glucagon levels of 0.7 µg/ml have been observed in
pathological conditions such as exsanguination (Lindsey et al.,
1975). Investigators have shown that systemic administration
of glucagon can stimulate oxidative phosphorylation in hepatic
(Siess and Wieland, 1978) and cardiac cells (Friedmann et al.,
1980). Kirsch et al. (Kirsch and D’Alecy, 1984) found that
glucagon enhanced the incorporation of β-hydroxybutyrate into
CO2 in rat brain slices. However, D’Alecy et al. found that
glucagon’s stimulatory effect on ATP production is not due
to direct stimulation of β-hydroxybutyrate oxidation (D’Alecy
et al., 1986). Glucagon’s stimulatory effect on mitochondrial
oxidative phosphorylation is thought to be mediated by
adenylate cyclase activation, producing elevated cytosolic 3′,5′-
cAMP and ultimately acting to stimulate electron flow between
cytochrome c1 and cytochrome c (Garrison and Haynes, 1975;
Halestrap, 1978; Hoosein and Gurd, 1984). Glucagon may
also act directly on isolated mitochondria and specifically
alter oxidative metabolism, as Yun J. et al. (2009) I-labeled
monoiodoglucagon has been demonstrated to directly bind to

rat brain membranes and mitochondria and alter glutamate-
mediated oxidative metabolism (D’Alecy et al., 1986). Glucagon
may confer neuroprotection by stimulating mitochondrial
substrate oxidation and ATP production which had been initially
suppressed by hypoxia.

Glutamine, a substrate used in gluconeogenesis, is a precursor
molecule for glutathione, which protects against ROS toxicity. It
has been shown that glutamine supplementation can maintain
high levels of glutathione and subsequently avoid oxidative stress
damage (Amores-Sánchez and Medina, 1999). However, on the
other spectrum, high glutamate levels has been implicated to
be neurotoxic in stroke, head trauma, multiple sclerosis and
neurodegenerative diseases (Matés et al., 2002). It has been
shown that exogenous α-tocopherol could prevent N-methyl-D-
aspartate (NMDA)-induced increases in glutamine synthetase, an
enzyme specific to glial cells. As α-tocopherol is an antioxidant,
its involvement suggests that ROS may be associated with the
glutamate excitotoxic process (Davenport Jones et al., 1998).

Hepatic gluconeogenesis activity has been demonstrated in
rat models to be significantly increased in the setting of cerebral
ischemia (Wang et al., 2013). In the acute phase (24 h) of stroke,
rats developed higher fasting blood glucose and insulin levels
in addition to the upregulation of hepatic gluconeogenic gene
expression, including phosphoenolpyruvate carboxykinase,
glucose-6-phosphatase, and fructose-1,6-bisphosphatase (Wang
et al., 2013). Hepatic gluconeogenesis-associated positive
regulators, such as FoxO1, CAATT/enhancer-binding proteins
(C/EBPs), and cAMP responsive element-binding protein
(CREB), were also upregulated. In terms of insulin signaling
transduction, the phosphorylation of insulin receptor (IR),
insulin receptor substrate-1 (IRS1) at the tyrosine residue, Akt,
and AMP-activated protein kinase (AMPK), were attenuated
in the liver, while negative regulators such as phosphorylation
of p38, c-Jun N-terminal kinase (JNK), and IRS1 at the serine
residue, were increased. In addition, the brains of rats with
stroke exhibited a reduction in phosphorylation of IRS1 at
the tyrosine residue and Akt. Circulating cortisol, glucagon,
C-reactive protein (CRP), monocyte chemoattractant protein
1 (MCP-1), and resistin levels were elevated, but adiponectin
was reduced. This suggests that cerebral ischemic stroke may
modify the intracellular and extracellular environments, favoring
hyperglycemia, and hepatic gluconeogenesis.

Gliomas
One of the mechanisms for cancer cell growth and survival is
enhanced glucose metabolism through aerobic glycolysis, also
known as the Warburg effect (Vander Heiden et al., 2009).
There is a high metabolic demand in malignant tumor cells for
biochemical building blocks, such as amino acids for protein
synthesis, nucleic acids for gene replication, and fatty acids for
phospholipid membrane barriers (Locasale and Cantley, 2011).
Amino acids, such as glutamine, has been shown to be a source
of energy production in gluconeogenesis (DeBerardinis et al.,
2007). In advanced-stage cancers, energy may be derived from
enhanced oxidation of BCAA, valine, leucine, and isoleucine
(Beck and Tisdale, 1989; Pisters and Pearlstone, 1993; Baracos
andMackenzie, 2006). The brain interstitium contains high levels

Frontiers in Pharmacology | www.frontiersin.org 5 January 2017 | Volume 7 | Article 521

http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology/archive


Yip et al. Gluconeogenesis in Gliomas and Stroke

of glutamine (Yudkoff et al., 1993) and BCAA (Yudkoff, 1997;
Daikhin and Yudkoff, 2000) which can serve as energy substrates
through gluconeogenesis (DeBerardinis et al., 2007), and their
abundance may contribute to brain cancer growth and survival.

A number of evidence has demonstrated that cancer consists
of a subset of stem cells that may be responsible for resistance
to conventional cancer therapies and promote tumor growth
(Hanahan andWeinberg, 2011). It has been observed that cancer
stem cells from glioblastomas depend on G6PC and use the
enzyme to counteract glycolytic inhibition (Abbadi et al., 2014).
Interestingly, the knockdown of G6PC was able to decrease
the aggressive phenotype of glioblastoma stem cells, potentially
through the downregulation of the CD133/AKT pathway and
an increase in glycogen accumulation through activation of
GS and inhibition of glycogen phosphorylase, which has been
previously shown to induce cancer cell death (Lee et al., 2004;
Favaro et al., 2012). G6PC knockdown also reduced migration,
invasion, and cell viability (Abbadi et al., 2014). A number of
studies have suggested that cancer cells have elevated levels of
glycogen (Rousset et al., 1981), which is accumulated in response
to hypoxic stimulation for later use in several cancer cell lines
(Pelletier et al., 2012). InU87 glioma cells, glycogen accumulation
induces premature cell senescence (Favaro et al., 2012).

Recent studies have found that glioblastomas and brain
metastases have the capacity to oxidize acetate in the citric acid
cycle (Mashimo et al., 2014), which is unexpected as there is
no simple pathway for acetate to enter the lactate or pyruvate
pool (Cerdan et al., 1990; Håberg et al., 1998a,b; Deelchand
et al., 2009; Marin-Valencia et al., 2012). There have been
studies describing “pyruvate recycling,” where acetate converts
into the TCA intermediates to generate pyruvate (Cerdan et al.,
1990; Cruz et al., 1998; Håberg et al., 1998a,b; Serres et al.,
2007; Deelchand et al., 2009). The net synthesis of pyruvate
can be achieved by malate decarboxylation to pyruvate through
the activity of malic enzyme, and oxaloacetate decarboxylation
through the conjugated actions of PCK and pyruvate kinase
(Olstad et al., 2007). Pyruvate can then enter the TCA cycle
via acetyl-CoA. Pyruvate recycling is well-described in the
liver (Freidmann et al., 1971) and the kidney (Rognstad and
Katz, 1972). Pyruvate recycling degrades compounds such as
glutamate, glutamine, or aspartate, which are originally derived
from pyruvate carboxylation, to pyruvate and reenter the TCA
cycle as acetyl CoA (Olstad et al., 2007). Pyruvate recycling has
been reported in rat brain following infusion of acetate (Cerdan
et al., 1990; Cruz et al., 1998).

In the liver, systemic acetate may also enter the citric acid
cycle. Although net synthesis of glucose from acetyl groups
does not occur in mammalian liver, acetate may convert into
oxaloacetate and enter gluconeogenesis. Glucose formed by
hepatic gluconeogenesis may then be metabolized in brain
tumors and generate lactate through glycolysis, contributing to
the brain tumor lactate pool (Pichumani et al., 2016). Studies that
tracked radioactively-labeled acetate revealed that the majority of
lactate in brain tumors is from acetate directly metabolized in
human glioblastomas and brain metastasis, contributing up to
48% of the acetyl-CoA pool (Mashimo et al., 2014; Pichumani
et al., 2016). Acetate may also produce lactate elsewhere in
the body and enter blood circulation to be transported to the

tumor and used as an energy source. Many human tumors have
elevated lactate dehydrogenase 5 (LDH5) levels, and the lactate
dehydrogenase C (LDHC) gene has been found to be expressed in
many tumors. Alternatively, neighboring astrocytes may convert
the monocarboxylate chain of lactate to glycogen and transport
to neurons as glucose (DiNuzzo et al., 2011).

Mutations in the PTEN gene have also been demonstrated
to commonly occur in gliomas (Cantley and Neel, 1999; Sano
et al., 1999; Zundel et al., 2000; Fan et al., 2002), leading
to loss of negative regulation on the phosphatidylinositol-3
kinase (PI3K)/Akt pathway. This results in phosphorylation,
and hence deactivation, of GS kinase-3 (GSK3) and subsequent
dephosphorylation/activation of GS. When the pathway is
stimulated, inactivated GSK3 is unable to interact with other
kinases to constitutively inhibit GS. Decreased expression of
PTEN was found in 29 of 42 (69%) of glioblastomas from human
patients based on immunostains (Sano et al., 1999). A study
that tested six glioblastoma specimens through immunoblotting
found decreased levels of PTEN in all six samples and increased
activation/phosphorylation of downstream Akt in 4 of 6 (67%)
glioblastomas (Ermoian et al., 2002). Recently, phosphorylated
Akt has been found in 18 of 29 (62%) glioblastoma specimens
and 22 of 40 (55%) gliomas of any grade. Interestingly, none
of the 22 gliomas with high levels of phosphorylated Akt
responded to treatment with erlotinib, an epidermal growth
factor tyrosine kinase inhibitor. However, 8 of 18 tumors with
low levels of phosphorylated Akt respond to the drug. Increased
activation of the PI3K/Akt pathway was also associated with
tumor progression in these specimens (Haas-Kogan et al., 2005).

Other factors include PDH, a potential mediator that protects
against cancer and has been observed to reduce glioblastoma
growth (Adeva et al., 2013). Mitochondrial DNA mutations
have also been detected in a number of cancers. Succinate
dehydrogenase genes have been shown to act as a tumor
suppressor and thus mutations in these genes increases the risk
of tumor progression (Adeva et al., 2013).

Brain Metastatic Cancer (Breast Cancer)
One of the driving forces behind altered energy metabolism is
the factors that influence the extrinsic tissue microenvironment,
such as the presence of hypoxia or hypoglycemia (Yun J.
et al., 2009). These factors exist in the microenvironment
during unregulated tumor expansion and to which metastatic
cancer cells migrate, which may contrast the primary site where
nutrients and growth factors may be more abundant (Fidler,
2003; Martinez-Outschoorn et al., 2011). There is great diversity
between the microenvironments of various tissues. Cancer cells
can extravasate from their primary site and reach multiple
organs, but its proliferation is restricted by the secondary
site’s microenvironment (Fidler, 2003). The malignancy of such
cancer cells is largely determined by its compatibility with
the microenvironment of the host tissue. Studies have shown
that tissue stromal cells can be reprogrammed to metabolize
lactate secreted by cancer cells (Martinez-Outschoorn et al., 2011;
Yuneva et al., 2012).

The role of various energy sources in the growth and
survival of metastatic brain cancer remains to be elucidated.
It has been demonstrated that mRNA of genes involved in
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glycolysis are elevated in brain metastatic cells (Chen et al.,
2007). However, with the low glucose level in the brain’s
interstitium, metastatic cancer growth, and survival would
require metabolic reprogramming within cancer cells, such as
enhancing gluconeogenic enzyme levels, or modifications in
the tissue microenvironment to take advantage of other energy
sources. While increased levels of glycolytic enzymes were found
in brain cancer cells (Chen et al., 2007; Palmieri et al., 2009),
studies have demonstrated that enhanced glucose uptake is not
a feature of breast cancer brain metastasis (Chen, 2007; Kitajima
et al., 2008; Bochev et al., 2012; Manohar et al., 2013). This
suggests that glucose may not be the primary or only energy
source for brain metastasis.

Recently, it was found that, unlike native brain cancer cells,
brain metastatic cancer cells from the breast could proliferate in
the absence of glucose by acquiring enhanced gluconeogenesis
capabilities, with increased oxidation of BCAA and glutamine,
and upregulation of FBP (Chen et al., 2015). The study also
found FBP upregulation in clinical specimens of brain metastasis
and growth inhibition when FBP is knocked down in orthotopic
brain metastasis formed by breast cancer cells, suggesting that
activation of FBP-based gluconeogenesis is important for the
growth and survival of metastatic cancer cells in the brain. The
role of BCAA in metastatic brain cancer survival is further
supported by studies that found higher sensitivity in tracing
(Adina-Zada et al., 2012) C-BCAA for brain metastasis imaging
compared to the glucose analog tracer (Tillmann and Eschrich,
1998) FDG, suggesting high levels of BCAA uptake by brain
metastatic cancer cells (Chen, 2007; Kitajima et al., 2008; Bochev
et al., 2012; Manohar et al., 2013).

Interestingly, in hepatocellular carcinoma, glycolytic tumors
with increased (Tillmann and Eschrich, 1998) F-FDG uptake
use glucose as a nutrient source for proliferation, whereas low
glycolytic tumors show increased (Adina-Zada et al., 2012) C-
acetate uptake accompanying lipid synthesis (Vavere et al., 2008).
This has beenwell-correlated to histological grade, with glycolytic
cancers having a higher histological grade than low glycolytic
tumors (Yun M. et al., 2009). In contrast to typical glycolytic
tumors, low glycolytic tumors were still able to preserve hepatic
gluconeogenesis with autophagy as a supporting mechanism
(Jeon et al., 2015).With the advent ofmodern imaging techniques
such as PET, radiolabeling of glucose with (Tillmann and
Eschrich, 1998) F has successfully imaged the altered metabolism
of cancer, revolutionizing conventional cancer diagnosis (Xu
et al., 2013).

Host-Mediated Immunity in Malignancy
Tumor-infiltrating lymphocytes such as cytotoxic T cells are
well-known to provide host protection against cancerous cells
and infectious pathogens (Shiao et al., 2011; Braumüller et al.,
2013). In tumors, however, the cytotoxic functions of TIL
such as IFN-γ, IL-2, IL-17, and granzyme B production are
inhibited by multiple environmental factors (Cham et al., 2008;
Mellman et al., 2011; Michalek et al., 2011; Shiao et al., 2011;
Finlay et al., 2012; Chang et al., 2013). Alterations in nutrient
availability, such as lactate and tryptophan metabolites, in the
tumor microenvironment can limit TIL activity (Yang et al.,
2013). Increased expression of inhibitory checkpoint receptors,

such as programmed cell death protein 1 (PD-1), lymphocyte-
activation gene 3 (Lag3), and cytotoxic T-lymphocyte-associated
protein 4 (CTLA-4) desensitizes T cell receptor (TCR) signaling
and contributes to their functional impairment (Baitsch et al.,
2012), commonly referred to as “functional exhaustion” (Wherry,
2011). These discoveries have led to the development of cancer
immunotherapies that reawaken exhausted TIL by blocking
inhibitory checkpoint receptors and the use of ACT with tumor-
specific T cells to restore the repertoire of cytotoxic T cells to
eradicate tumors.

T cells undergo a metabolic switch similar to cancer cells and
upregulate aerobic glycolysis and glutaminolysis for proliferation
and differentiation into activated effector T cells (Ho et al., 2015).
PI3K, Akt, and mTOR activation triggers the switch to anabolic
metabolism by inducing transcription factors such as Myc and
hypoxia-inducible factor 1 (HIF1; Wang et al., 2011; MacIver
et al., 2013). Anergic T cells are unable to activate Ca2+ and
NFAT signaling and have diminished rates of aerobic glycolysis
and anabolic metabolism following stimulation (Srinivasan and
Frauwirth, 2007; Zheng et al., 2009). Similarly, CD8+ T cells
with increased PD-1 expression are unable to activate mTOR
or aerobic glycolysis following TCR stimulation, whereas T cells
with hyper-HIF1α activity and aerobic glycolysis are refractory
to functional exhaustion (Parry et al., 2005; Doedens et al., 2013;
Staron et al., 2014).

It is likely that, given their similar metabolic profiles and
nutrient requirements, the high metabolic demand and nutrient
consumption of tumor cells prevent TIL proliferation and
differentiation, leading to functional impairment. Recent
studies have shown that when glycolytic rates are low,
glyceraldehyde phosphate dehydrogenase (GAPDH) suppresses
IFN-γ production in T cells (Chang et al., 2013; Gubser et al.,
2013). Studies have also found that CD4+ T cells in tumors were
deprived of glucose which resulted in diminished tumoricidal
functions, suggesting that glucose deprivation might contribute
to TIL exhaustion (Ho et al., 2015). Ho et al. (2015) also
demonstrated increased hexokinase 2 (HK2) expression in
melanoma cells that allowed for a more efficient evasion of
CD4 T cell-mediated immune surveillance, indicating that
competition for nutrients could exist between TIL and tumor
cells. Furthermore, phosphoenolpyruvate deficiency was found
to increase SERCA-mediated Ca2+ re-uptake, preventing
Ca2+-NFAT signaling and T cell activation. Promoting
phosphoenolpyruvate production in T cells may prove to
be a promising strategy to improve the tumoricidal effects of TIL
and ACT.

CONCLUSION AND FUTURE STUDIES

In addition to glycolysis which has been extensively studied on
the mechanisms of ischemic stroke and brain tumors, studies
on alternative pathways, gluconeogenesis, during such a stress
conditions, are limited. It is becoming more recognized as an
important pathway for alternative energy sources in the brain.

The biochemical mechanisms for astrocytes to convert from
glycolysis or glycogenolysis to gluconeogenesis for neuronal
energy remain to be elucidated. AMP or hexose phosphate
depletion may activate FBP and suppress phosphofructokinase.
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A decrease in the level of fructose-2,6-biphosphate by low
phosphofructokinase activity may favor lactate or glutamate for
oxidative energy production and glycogen synthesis. Further
studies are needed to discover how the gluconeogenesis pathway
is controlled in the brain, which may lead to the development of
therapeutic targets to control energy levels, and therefore cellular
survival, in ischemic stroke patients or inhibit gluconeogenesis
in brain tumors to promote malignant cell death and tumor
regression.
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